Friday, March 2, 2012

1112.0558 (Edan Lerner et al.)

A unified framework for non-Brownian suspension flows and soft amorphous
solids
   [PDF]

Edan Lerner, Gustavo Düring, Matthieu Wyart
While the rheology of non-Brownian suspensions in the dilute regime is well-understood, their behavior in the dense limit remains mystifying. As the packing fraction of particles increases, particle motion becomes more collective, leading to a growing length scale and scaling properties in the rheology as the material approaches the jamming transition. There is no accepted microscopic description of this phenomenon. However, in recent years it has been understood that the elasticity of simple amorphous solids is governed by a critical point, the unjamming transition where the pressure vanishes, and where elastic properties display scaling and a diverging length scale. The correspondence between these two transitions is at present unclear. Here we show that for a simple model of dense flow, which we argue captures the essential physics near the jamming threshold, a formal analogy can be made between the rheology of the flow and the elasticity of simple networks. This analogy leads to a new conceptual framework to relate microscopic structure to rheology. It enables us to define and compute numerically normal modes and a density of states. We find striking similarities between the density of states in flow, and that of amorphous solids near unjamming: both display a plateau above some frequency scale \omega* ~ |z_c-z|, where z is the coordination of the network of particles in contact, z_c = 2D where D is the spatial dimension. However, a spectacular difference appears: the density of states in flow displays a single mode at another frequency scale \omega_{min} << \omega* governing the divergence of the viscosity.
View original: http://arxiv.org/abs/1112.0558

No comments:

Post a Comment