Wednesday, June 20, 2012

1206.4159 (William Irvine et al.)

Geometric background charge: dislocations on capillary bridges    [PDF]

William Irvine, Vincenzo Vitelli
Recent experiments have shown that colloidal crystals confined to weakly curved capillary bridges introduce groups of dislocations organized into `pleats' as means to relieve the stress caused by the Gaussian curvature of the surface. We consider the onset of this curvature-screening mechanism, by examining the energetics of isolated dislocations and interstitials on capillary bridges with free boundaries. The boundary provides an essential contribution to the problem, akin to a background charge that "neutralizes" the unbalanced integrated curvature of the surface. This makes it favorable for topologically neutral dislocations and groups of dislocations - rather than topologically charged disclinations and scars - to relieve the stress caused by the unbalanced gaussian curvature of the surface. This effect applies to any crystal on a surface with non-vanishing integrated Gaussian curvature and stress-free boundary conditions. We corroborate the analytic results by numerically computing the energetics of a defected lattice of springs confined to surfaces with weak positive and negative curvature
View original: http://arxiv.org/abs/1206.4159

No comments:

Post a Comment