Thursday, August 23, 2012

1208.4186 (Won Kyu Kim et al.)

Weak temporal signals can synchronize and accelerate the transition
dynamics of biopolymers under tension
   [PDF]

Won Kyu Kim, Changbong Hyeon, Wokyung Sung
In addition to thermal noise, which is essential to promote conformational transitions in biopolymers, cellular environment is replete with a spectrum of athermal fluctuations that are produced from a plethora of active processes. To understand the effect of athermal noise on biological processes, we studied how a small oscillatory force affects the thermally induced folding and unfolding transition of an RNA hairpin, whose response to constant tension had been investigated extensively in both theory and experiments. Strikingly, our molecular simulations performed under overdamped condition show that even at a high (low) tension that renders the hairpin (un)folding improbable, a weak external oscillatory force at a certain frequency can synchronously enhance the transition dynamics of RNA hairpin and increase the mean transition rate. Furthermore, the RNA dynamics can still discriminate a signal with resonance frequency even when the signal is mixed among other signals with nonresonant frequencies. In fact, our computational demonstration of thermally induced resonance in RNA hairpin dynamics is a direct realization of the phenomena called stochastic resonance (SR) and resonant activation (RA). Our study, amenable to experimental tests using optical tweezers, is of great significance to the folding of biopolymers in vivo that are subject to the broad spectrum of cellular noises.
View original: http://arxiv.org/abs/1208.4186

No comments:

Post a Comment