Richard Matthews, Christos N. Likos
A coarse-grained computational model is used to investigate the effect of a fluid membrane on patchy-particle assembly into biologically-relevant structures motivated by viral cores and clathrin. For cores, we demonstrate a non-monotonic dependence of the promotion of assembly on membrane stiffness. If the membrane is significantly deformable, cores are enveloped in buds, although this effect is suppressed for very flexible membranes. In the less deformable regime, we observe no marked enhancement for cores, even for strong adhesion to the surface. For clarthrin-like particles, we again observe the formation of buds, whose morphology depends on membrane-flexibility.
View original:
http://arxiv.org/abs/1209.3122
No comments:
Post a Comment