Friday, October 12, 2012

1210.3177 (M. Pica Ciamarra et al.)

The first jamming crossover: geometric and mechanical features    [PDF]

M. Pica Ciamarra, P. Sollich
The jamming transition characterizes athermal systems of particles interacting via finite range repulsive potentials, and occurs on increasing the density when particles cannot avoid making contacts with those of their first coordination shell. We have recently shown [M. Pica Ciamarra and P. Sollich, arXiv:1209.3334] that the same systems are also characterized by a series of jamming crossovers. These occur at higher volume fractions as particles are forced to make contact with those of subsequent coordination shells. At finite temperature, the crossovers give rise to dynamic and thermodynamic density anomalies, including a diffusivity anomaly and a negative thermal expansion coefficient. Density anomalies may therefore be related to structural changes occurring at the jamming crossovers. Here we elucidate these structural changes, investigating the evolution of the structure and of the mechanical properties of a jammed system as its volume fraction varies from the jamming transition to and beyond the first jamming crossover. We show that the first jamming crossover occurs at a well defined volume fraction, and that it induces a rearrangement of the force network causing a softening of the system. It also causes qualitative changes in the normal mode density of states and the spatial properties of the normal mode vectors.
View original: http://arxiv.org/abs/1210.3177

No comments:

Post a Comment