Fabien Paillusson, Daan Frenkel
When a granular system is tapped, its volume changes. Here, using a well-defined macroscopic protocol, we prepare an ensemble of granular systems and track the statistics of volume changes as a function of the number of taps. This is in contrast to previous studies, which have focused on single trajectories and assumed ergodicity. We devise a new method to assess the convergence properties of a sequence of ensemble volume histograms and introduce a reasonable approximate version of an invariant histogram. We then compare these invariant histograms with histograms generated by sampling a long trajectory for one system and observe nonergodicity, which we quantify. Finally, we use the overlapping histogram method to assess potential compatibility with Edwards' canonical assumption. Our histograms are incompatible with this assumption.
View original:
http://arxiv.org/abs/1210.5407
No comments:
Post a Comment