Wednesday, December 5, 2012

1212.0437 (I. Neri et al.)

Modelling cytoskeletal traffic: an interplay between passive diffusion
and active transport
   [PDF]

I. Neri, N. Kern, A. Parmeggiani
We introduce the totally asymmetric exclusion process with Langmuir kinetics (TASEP-LK) on a network as a microscopic model for active motor protein transport on the cytoskeleton, immersed in the diffusive cytoplasm. We discuss how the interplay between active transport along a network and infinite diffusion in a bulk reservoir leads to a heterogeneous matter distribution on various scales. We find three regimes for steady state transport, corresponding to the scale of the network, of individual segments or local to sites. At low exchange rates strong density heterogeneities develop between different segments in the network. In this regime one has to consider the topological complexity of the whole network to describe transport. In contrast, at moderate exchange rates the transport through the network decouples, and the physics is determined by single segments and the local topology. At last, for very high exchange rates the homogeneous Langmuir process dominates the stationary state. We introduce effective rate diagrams for the network to identify these different regimes. Based on this method we develop an intuitive but generic picture of how the stationary state of excluded volume processes on complex networks can be understood in terms of the single-segment phase diagram.
View original: http://arxiv.org/abs/1212.0437

No comments:

Post a Comment