Monday, March 11, 2013

1303.2058 (Ingrid Ibagon et al.)

Wetting in electrolyte solutions    [PDF]

Ingrid Ibagon, Markus Bier, S. Dietrich
Wetting of a charged substrate by an electrolyte solution is investigated by means of classical density functional theory applied to a lattice model. Within the present model the pure, i.e., salt-free solvent, for which all interactions are of the nearest-neighbor type only, exhibits a second-order wetting transition for all strengths of the substrate-particle and the particle-particle interactions for which the wetting transition temperature is nonzero. The influences of the substrate charge density and of the ionic strength on the wetting transition temperature and on the order of the wetting transition are studied. If the substrate is neutral, the addition of salt to the solvent changes neither the order nor the transition temperature of the wetting transition of the system. If the surface charge is nonzero, upon adding salt this continuous wetting transition changes to first-order within the wide range of substrate surface charge densities and ionic strengths studied here. As the substrate surface charge density is increased, at fixed ionic strength, the wetting transition temperature decreases and the prewetting line associated with the first-order wetting transition becomes longer. This decrease of the wetting transition temperature upon increasing the surface charge density becomes more pronounced by decreasing the ionic strength.
View original: http://arxiv.org/abs/1303.2058

No comments:

Post a Comment