Wednesday, March 20, 2013

1303.4644 (Gayatri Das et al.)

Unveiling the complex glassy dynamics of square shoulder systems:
simulations and theory
   [PDF]

Gayatri Das, Nicoletta Gnan, Francesco Sciortino, Emanuela Zaccarelli
We performed extensive molecular dynamics (MD) simulations, supplemented by Mode Coupling Theory (MCT) calculations, for the Square Shoulder (SS) model, a purely repulsive potential where the hard-core is complemented by a finite shoulder. For the one-component version of this model, MCT predicted [Sperl {\it et al.} Phys. Rev. Lett. {\bf 104}, 145701 (2010)] the presence of diffusion anomalies both upon cooling and upon compression and the occurrence of glass-glass transitions. In the simulations, we focus on a non-crystallising binary mixture, which, at the investigated shoulder width, shows a non-monotonic behaviour of the diffusion upon cooling but not upon isothermal compression. In addition, we find the presence of a disconnected glass-glass line in the phase diagram, ending in two higher-order singularities. These points generate a logarithmic dependence of the density correlators as well as a subdiffusive behaviour of the mean squared displacement, although with the interference of the nearby liquid-glass transition. We also perform novel MCT calculations using as input the partial structure factors obtained within MD, confirming the simulation results. The presence of two hard sphere glasses, differing only in their hard core length, is revealed, showing that the simple competition between the two is sufficient for creating a rather complex dynamical behaviour.
View original: http://arxiv.org/abs/1303.4644

No comments:

Post a Comment