Tuesday, July 23, 2013

1307.5565 (Trang N. Do et al.)

RNA/peptide binding driven by electrostatics -- Insight from
bi-directional pulling simulations

Trang N. Do, Paolo Carloni, Gabriele Varani, Giovanni Bussi
RNA/protein interactions play crucial roles in controlling gene expression. They are becoming important targets for pharmaceutical applications. Due to RNA flexibility and to the strength of electrostatic interactions, standard docking methods are insufficient. We here present a computational method which allows studying the binding of RNA molecules and charged peptides with atomistic, explicit-solvent molecular dynamics. In our method, a suitable estimate of the electrostatic interaction is used as an order parameter (collective variable) which is then accelerated using bi-directional pulling simulations. Since the electrostatic interaction is only used to enhance the sampling, the approximations used to compute it do not affect the final accuracy. The method is employed to characterize the binding of TAR RNA from HIV-1 and a small cyclic peptide. Our simulation protocol allows blindly predicting the binding pocket and pose as well as the binding affinity. The method is general and could be applied to study other electrostatics-driven binding events.
View original: http://arxiv.org/abs/1307.5565

No comments:

Post a Comment