J. Javier Brey, P. Maynar, M. I. Garcia de Soria
The decay of a small homogeneous perturbation of the temperature of a dilute granular gas in the steady uniform shear flow state is investigated. Using kinetic theory based on the inelastic Boltzmann equation, a closed equation for the decay of the perturbation is derived. The equation involves the generalized shear viscosity of the gas in the time-dependent shear flow state, and therefore it predicts relevant rheological effects beyond the quasi-elastic limit. A good agreement is found when comparing the theory with molecular dynamics simulation results. Moreover, the Onsager postulate on the regression of fluctuations is fulfilled.
View original:
http://arxiv.org/abs/1212.3937
No comments:
Post a Comment