Sunday, May 19, 2013

1105.0297 (B. Chareyre et al.)

Pore-scale Modeling of Viscous Flow and Induced Forces in Dense Sphere

B. Chareyre, A. Cortis, E. Catalano, E. Barthélémy
We propose a method for effectively upscaling incompressible viscous flow in large random polydispersed sphere packings: the emphasis of this method is on the determination of the forces applied on the solid particles by the fluid. Pore bodies and their connections are defined locally through a regular Delaunay triangulation of the packings. Viscous flow equations are upscaled at the pore level, and approximated with a finite volume numerical scheme. We compare numerical simulations of the proposed method to detailed finite element (FEM) simulations of the Stokes equations for assemblies of 8 to 200 spheres. A good agreement is found both in terms of forces exerted on the solid particles and effective permeability coefficients.
View original:

No comments:

Post a Comment